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Abstract. Trading decisions in financial markets can be sujggl by the use of

online algorithms. We evaluate the empirical perfance of a threat-based
online algorithm and compare it to a reservatioicepalgorithm, an average
price algorithm and to buy-and-hold. The effectie®s of the algorithms is
analyzed with historical DAX prices for the yeai$98 to 2007. Performance
measures are geometric return and period retum p&hformance of the threat-
based algorithm found in the simulation runs dondgall other investigated
algorithms. We also compare its performance to lt®sitom worst case

analysis and conducttdest.
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1 Introduction

Many major financial markets are electronic maniigices where trading is carried
out automatically. Trading algorithms which have thotential to operate without
human interaction are of great importance in etantr financial markets. Very often
such algorithms are based on data from technicysis as described Brock et al.
[BLL92], Mils [Mil98], Ratner and LealRL99], Kwon and KishKK02], and Shen
[She03]. Many researchers have also studied traalgyithms from the perspective
of artificial intelligence, software agents or rglunetworks cfFeng et al.[FRS04],
Silaghi and RobyiSR05] andChavarnakul and EnkgCEOQS8].

In order to carry out trading policies automatigatey have to be converted into
trading algorithms. Before a trading algorithm pked one should be interested in
its performance. The performance analysis of t@ditgorithms can basically be
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carried out by three different approaches. OneageBian analysis where a given
probability distribution for asset prices is a lsagsissumption. Another one is
assuming strict uncertainty about asset prices aralyzing the trading algorithm
under worst case outcomes. This approach is caltedt case competitive analysis.
The third one is a heuristic approach where tradiiggrithms are tested on historic
data by simulation runs. In this paper we applytthied approach and compare the
results to these of the second one. Note, thatousotideal with probabilities and we
do not calculate risk measures based on probakilitve do not want to explain
market behaviour. We want to compare the performanic algorithms when we
assume uncertainty of asset prices which are dfevam a given interval of minimum
and maximum prices.

We consider single and multiple trade problems amalyze a threat-based online
trading algorithm from a worst case and an emgirieege point of view based on
experimental data. For the empirical case the Hgtwabserved performance is
calculated and for the worst case the worst pasgibiformance which could have
been occurred is calculated when the experimemt@ & considered. Moreover we
compare its performance to this of an optimal trgdalgorithm, and three other
online algorithms based on reservation prices,ageeprices, and buy and hold.

The reminder of this paper is organized as followghe next section the problem
is formulated and worst case competitive analy$ishe reservation price and the
threat-based trading algorithms are performed.i@e@& gives a literature overview
on heuristic trading rules for multiple trade pmik. In Section 4 new trading rules
based on online algorithms for this problem argothiced. Section 5 presents
detailed experimental findings from our simulatiomns. We finish with some
conclusions and suggestions for future researtheifast section.

2 Problem For mulation

If we trade in markets we are interested in buyahdow prices and selling at high
prices. Let us consider the single trade problechtha multiple trade problem with a
finite trading horizon. In a single trade problere search for the minimum price
and the maximum prickl in a time series of prices once. At best we buy and sell
later atM. Buying and selling can be interpreted as exchrapgome assat (e.g.
cash) to some other asse{e.g. stock). In a multiple trade problem we exde
assets more than once. If we buy and sell (exchaagsetsp times we call the
problemp-trade problem withp > 1.

As we do not know future asset prices the decistonbe taken are subject to
uncertainty. How to handle uncertainty for tradprgblems is discussed H-Yaniv
et al.[YFKTO1]. Trading is represented by search. Tosdinancial search problems
a trader which owns some asset at time0 obtains price quotationgt) with m <
g(t) <M at points of time = 1, 2, ...,T. For eachy(t) the trader must decide which
fraction s(t) of his current asset he wants to sell at timaAt the last pricey(T) the
trader must sell all the remaining fractions of #eset he holds at the last point of
time T of the trading horizon. It is assumed that theetimterval [1,T] and the
possible minimum and maximum pricesand M of the interval are known to the
trader. The problem to determis@) fort =1, 2, ...,T is solved by online algorithms.
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An algorithmON computes online if for eagh= 1, ...,t-1, it computes an output
for j before the input foj+1 is given. An algorithm computes offline if itmputes a
feasible output given the entire input sequepeel, ...,t-1.We denote an optimal
offline algorithm byOPT. An online algorithnmON is c-competitive if for any input

ON(l) > 1/c - OPT(l). (2-1)

If the competitive ratio is related to a performarguarantee it must be a worst
case measure. In such a case emmpmpetitive online algorithm can guarantee a
value of at least the fractioncléf the optimal offline valu®©PT(l) no matter how
unfortunate or uncertain the future will be. As ng&ve a maximization probleo> 1
the smallerc the more effective i©N. Later we will define a competitive ratio also
for the empirical case.

We analyse the competitive ratio of two online alfpons based on a reservation
price policy &t)[1{0,1}) and on a threat based policy (0s&) < 1). We differ
between a worst case competitive ratio for seageimd a worst case competitive ratio
for tradingc;.

(1) Reservation Price Policy
For the search problem the selling rule introdusgé|-Yaniv[Yan98]

sell at the first price greater or equal to resetiea price =+ M [

has a competitive ratie, =+ M /' m whereM andm are upper and lower bounds of

pricesq(t) with g(t)LI[m, M]. c; measures the worst case in terms of maximum and
minimum prices. This result can be transferred single trade problem if we modify
the rule to

buy the asset at the first price smaller or equad @ell the asset at the first price
greater or equal to the reservation prigg=+/M [in.

In the single trade problem we have to carry oetsarch twice. In the worst case we
get a competitive ratio af, for buying and the same competitive raticcgor selling
resulting in an overall competitive ratio for thegle trade problem of; = cgCs =
M/m.

In general for thg-trade problem we get a worst case competitive i@t

&(P) = Ili=1....p (M()/m(i)) (2-2)

If m(i) and M(i) are constant for all tradeg(p) = (M/m)P. The ratioc(p) can be
interpreted as the geometric return we can achi®veébuying and selling assets
sequentially as stated Mohr and SchmidiMS08].
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(2) Threat-based Policy

For the search problem the following procedure uggested inEl-Yaniv et al.
[YFKTO1]:

Choose a competitive rat@mand select a trading algorithm which can guaratitee

(2.1) Consider exchanging asskfior assety only when the current exchange rate
q(t) (number of assetsfor one assdad) is the highest seen so far;

(2.2) Whenever you exchange assébr assey at timet convert enough to ensure
that the giverc would be obtained if an adversary dropped the eeaghange rate
g(t+1) to the minimum possible rate and kept it there until the end of the time
horizonT, i.e. that this threat exists.

Let k < T be the remaining exchange rates in the time sdratsq’(1) be the first
exchange rate of this time series. l&q’(1)) be a competitive ratio which is
achievable on a sequence bfexchange rateg’(1), ..., q'(K). The achievable
competitive ratiac’(q’ (1)) for k remaining trading days is determined by

¢ (@' (1))= 1+(@' (L)-m)/g’ (1))*(k-1)*2-[(a" (1)-m)/(M-m)] AL/ (k-1) (2-3)

The optimal competitive ratio for the search problis calculated by = sup c®
(a(2), a(2), ...,qkK) | k< T), cf. EI-Yaniv et al[YFKT92 and 01]. For each trade we
conduct the threat-based algorithm twice, oncebforing and once for selling. The
competitive ratio of the threat-based algorithm foe trading problem can be
calculated in the same way as it is done for tisemation price algorithm described
in2.1.

In the following we apply the reservation price ahd threat-based algorithms to
multiple trade problems and compare it to two otheding algorithms. Before doing
that we review experimental results for heuristéaling rules from the literature.

3 Related Work

Experimental analysis of online algorithms in thed of trading is a new areMohr
and Schmid{MSO08] investigate the empirical and the worstecasrformance of a
reservation price policy introduced B Yaniv[Yan98] and compare it to Buy and
Hold. Experimental analysis of online algorithms ather fields can be found in
Karlin [Kar98].

There are more results on experimental studies raflitg algorithms.
Unfortunately, this analysis is restricted to engair results and does not take into
account worst case results. We give a brief ovenoae the experimental studies on
heuristic trading policies for multiple trade prebis from the literature. Here the
comparison to Buy and Hold is of prime interest.

Two trading algorithms suggested Byock et al.[BLL92], the Moving Average
(MA) crossover and the Trading Range Breakout (TR0 known as Momentum),
are of major interest in the literatumdills [Mil98], Ratner and Lea[RL99], Kwon
and Kish[KK02], Chang et al[CLT04] andTabak and LimdTL09] also investigate
these rules.
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Brock et al.[BLL92] investigate the rules MA crossover and TR conducting
experiments with a price-weighted index (Dow Jomehustrial Average (DJIA)) for
the time period from 1897 to 1986. The returns on {sell) signals on the DJIA are
compared to returns from simulated comparison segenerated by the following
models:  autoregressive  (AR(1)), generalized autessjve conditional
heteroskedasticity in mean (GARCH-M) and an exptakiGARCH. The returns
obtained from buy (sell) signals of the tradingesubire not likely to be generated by
these three models. The results provide empiric@psrt for utilizing technical
trading rules where returns outperform not only Bagd Hold but also the
autoregressive (AR(1)), generalized autoregressoralitional heteroskedasticity in
mean (GARCH-M), and an exponential GARCH model.

Mills [Mil98] investigates the same two types of tradimudps as inBrock et al.
[BLL92] by conducting experiments on daily datathé London Stock Exchange
FT30 index for the time intervals 1935-1954 and 5:2994. In addition, trading
signals generated by the geometric MA and the ragtic MA are calculated. All
rules are compared to Buy and Hold. The geometcddve an almost identical set
of signals as the conventional (arithmetic) MA. UAB80 all investigated trading
rules outperform Buy and Hold. The resultavifls [Mil98] are consistent, in almost
every respect, with those 8fFock et al.[BLL92] until 1980. But from then on Buy
and Hold clearly dominates all other trading rul€éee sample used iBrock et al.
[BLL92] ended in 1986; so there was not the dataralyze structural shifts that
might have taken place starting in 1982.

Ratner and LealRL99] compare the MA crossover rules introducedBloock et
al. [BLL92] to Buy and Hold. Trading rules are invegtied in ten emerging equity
markets in Latin America and Asia from January 282 to April 1, 1995. The
average returns considering transaction costsdoh eule and country are compared
to Buy and Hold the S&P500 and Nikkei225 indicess®ts show that these trading
rules applied to emerging markets do not have thlityato outperform Buy and
Hold.

Kwon and KisHKK02] extend the work oBrock et al.[BLL92] in two ways. First
by investigating the predictive ability of histasladata to forecast future prices for the
New York Stock Exchange index (NYSE) and the NatloAssociation of Security
Dealers Automatic Quotations index (NASDAQ). Secdmydincluding another MA
trading rule called Moving Average with Trading ole (MAV). The experimental
study uses historical data from July 1962 to Deami996 for NYSE and from
January 1972 to December 1996 for NASDAQ. The tessthow that the trading
rules have potential to outperform Buy and Hdfagvon and Kish[KK02] compare
buy, sell, and buy-sell returns with returns frdm tandom walk model. The results
support the price-weighted index (Dow Jones Indais&verage (DJIA)) analysis of
[BLL92] by showing that the technical trading ruladd value by capturing profit
opportunities when compared to Buy and Hold.

Chang et al[CLT04] test whether returns for emerging stockrkets in US and
Japan are predictable. Predictability is analyzgdrigans of multivariate variance
ratios using heteroscedastic robust bootstrap duses. The MA and TRB rules
introduced byBrock et al.[BLL92] are employed and compared to buy and hold.
Results show that there is some evidence of fotiegapower. When trading costs
are taken into account only a few rules generasgipge excess return€hang et al.
[CLTO04] check for robustness by analyzing retumasrf 1559 different trading rules,
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testing different sub-samples, analyzing returndaéar and bull markets, and also
comparing results found for emerging markets toWlsand Japan. For the US the
MA trading rules do not seem to have forecastinggrdor the recent sample used by
Chang et al[CLT04].

Tabak and LimdTL09] also investigate the predictive power of tA and TRB
rules introduced brock et al.[BLL92] for the Brazilian exchange rate for the020
to 2006 period. A bootstrap procedure is employedest for the predictability of
exchange rates. Furthermore, the ability of thditg rules to generate significant
higher returns compared to the buy and hold retignissted. Results show that the
excess return generated by the MA and TRB rulemissignificant, suggesting that
such predictability is not economically significafitheir results are consistent with
those ofChang et al[CLT04].

Shen[She03]comparessimple market-timing heuristics to Buy and Holdading
signals are generated by the value of the shoeaspbetween the Earning-Price (EP)
ratio and selected interest rates using S&P500 fdata 1970 to 2000. Trading rules
either invest in the S&P500 index or in treasurlysbdver a period of one month
depending on predefined thresholds. If the spreaabove some threshold level, the
rule invests in the S&P500 index for the next moatil if the spread is below this
level, the portfolio is liquidated at the end oétimonth and the money is invested in
30-day treasury-bills for the next month. At thedeof each month spreads are
considered again. The portfolio return is compasitth these of S&P500 index Buy
and Hold for 1970 to 2000. Results show that tlaitg rule outperforms the
S&P500 index generating higher mean returns. Itiquéar, the rule based on the
spread between the EP ratio and a short-term sitea¢e beats the S&P500 index
even when transaction costs are taken into account.

Feng et al.[FRS04] andSilaghi and RobySRO05] evaluate different heuristic
trading rules but unfortunately do not comparertwilts to Buy and Hold.

Feng et al[FRS04] evaluate stock trading rules in the contéxhe Penn-Lehman
Automated Trading simulator. Two rules suggestedRkbpggang and Ston&®S03]
are used. The first rule is a market-making rulpl@tng market volatility without
predicting the direction of the stock price movemdime second rule is a reverse rule
based on technical analysis. Both rules trade tredgoft Corp. (MSFT) asset over
15 days from February 24, 2003 to March 18, 200® market-making rule fixes a
selling pricex and a buying pricg for MSFT. When prices go beyomd sell order is
placed and when prices drop wm buy order is placed. The reverse rule sells when
prices tend to move upwards and buys when prices te move downwards. The
experimental analysis is designed as a tournamignttivee rounds, each lasting one
week. Both rules survived the first round; the ne&nkaking rule did not survive the
second round. The reverse rule won the tournaméntithout achieving any profit.

Silaghi and RobySRO05] compare traditional price-based rules tesiased on
order book information. Tested rules are callediSt@rder Book Imbalance (SOBI),
Volume Average Weighted Prices (VWAP), Trend Follogv (TF) and Reverse
Policy (RP). SOBI buys (sells) if order book sdlices are greater (smaller) than the
order book buy prices. VWAP buys (sells) if the kedas average buying (selling)
prices are greater (smaller) than VWAP buying iisg)l prices. TF calculates a long
and a short trend line from ticker prices and bisglls) if slopes of long (short) and
short (long) match (both negative / positive). Toearth rule implemented is the
reverse rule discussed Bgng et al[FRS04]. All four rules were tested over a 15-
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day period from January 5, 2004 to January 23, 206#NASDAQ order book data.

Three mixed policies which combine two, three or @ the four rules were

considered: SOBI+VWAP+RP+TF, SOBI+RP and SOBI+RP+REsults compare

achieved returns and the Sharpe ratio. For a pdeadth of 15 days the best
combined rule is SOBI+RP+TF in terms of achievedinre the reverse rule is the
overall winner in terms of the Sharpe ratio.

Chavarnakul and EnkECEO8] compare combinations of moving averagesitesr
based on individual moving averages and to Buy ldoltl. The trading rules are
based on the Volume Adjusted Moving Average (VAMER the Ease of Movement
(EMV) indicators. VAMA is a moving average, wheneces are replaced by volume.
EMV illustrates the relationship between the rategiice and volume change of an
asset. Trading is simulated over a time horizol®#8 days from January 1998 to
December 2003. At each point of time only one asé¢he S&P500 index is in the
portfolio. Different types of period lengths areéstigated: 1 week (5-days), 4 weeks
(21-days) and 13 weeks (55-days). Trading signedsgenerated by VAMA and
EMV with and without the use of a Neural NetworkNN Transaction costs are not
considered. The VAMA rule buys if the price of thsset is smaller than the VAMA
and sells if the price is greater. The EMV tradinke buys when the smoothing value
of EMV crosses above zero from below and sells wthersmoothing value of EMV
crosses below zero from above. Trading rules mighbe executed depending on the
results of the NN which predict the next day's VAM&nd EMV. Different
combinations of trading rules are tested. VAMA+NN/AMA+NN+Filter,
VAMA+NN+SMA, and EMV+NN+VAMA. Benchmarks are VAMAEMV, a
Single Moving Average (SMA) and Buy and Hold. Réswdhow that trading with
NN support is helpful to generate better tradingiglens. The combined rule
EMV+NN+VAMA outperforms all benchmarks in terms aferage returns.

4 Experiments

Our experiments are based on the DAX 30 indexHertime interval 01-01-1998 to
12-31-2007. We excluded weekends from this intergalilting in 260 days for each
year. Trading is carried out by exchanging caslb ifite index (buying) and by
exchanging the index back into cash (selling). Hepassets than cash and index are
considered for trading.

For the multiple trade problem we divide the timaribon into several trading
periods of different length. Each trading period lefigth K consists of two sub-
periodsT_u= [K /2—‘ for buying (buying periods) andT_v = LK /2J for selling
(selling periodv) with K = T_u+ T_v. We differ between trading periods with 260,
130, 65, 20, and 10 days: one yelé=260 days, 130 days for buying (selling)), six
months (130 / 65 (65)), three months (65 / 33 (3 month (20 / 10 (10)), and two
weeks (10 / 5 (5)). With this arrangement we exeltrdding on weekends but other
country-specific non-trading days are not excluded. in 2007 we have only 252
trading days for th& = 260 days period. For the 130 buying days we e T u
= 127 days where buying is possible and for the d8ling days we have only v=
125 days where selling is possible. The number asfsiple trading days in each
period is always smaller or equal than the peragth. When we do not need to
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differ between buying and selling periods we derloéenumber of days in one period
simply byT.

Within each buying period we must exchange all dast the index and within
each selling period we must exchange all moneysiteekin the index back into cash.
At the end of the last day of each buying (sellipgfiod all cash (index) has been
exchanged into the index (cash). We assume thaedoh buying (selling) period
there are precise estimates of the possible maximpuoe M and the possible
minimum pricem.

In our experiments we investigate the followingeftvading algorithms:

(1) Optimal Trading

Optimal Trading OPT) is an offline algorithm which achieves the bes$gible return
in each trading period. It is assumed t@RT knows all prices of a period. In each
buying periodu OPTwill buy at the minimum realized prig&,i, > m(u) and will sell

in each selling perio@ at the maximum realized prigg,.x< M(v). OPT carries out
only two transactions in every trading period.

(2) Threat-based Trading

At every time an exchange is carried out the thbeaed algorithm Threa)
calculates the achievable competitive ratio forheperiod and buys or sells the
corresponding quantities such that the achievabtapetitive ratio is also realized.
There might be as many transactions as there geTda a trading period.

In our implementation of the algorithm we must eestinat the competitive ratio
for each period is never smaller than one and ribatmore than the available asset
values are traded.

(3) Reservation Price Trading

For every period the reservation price algoritt8guaré calculates reservation prices
RA(t) for each day. In caseSquarehas to buy (sell) the index the first prigg) with
q(t) < (>) RA) is accepted for buying (selling). If there was such price then
buying (selling) has to be done on the last dagf a period. There are only two
transactions in every trading period.

(4) Average Price Trading
The average price algorithmCénstant buys (sells) the index with the constant

fraction 1M _u (L/T_\) in every buying (selling) period. There afeu + T_v
transactions in every trading period.
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(5) Buy and Hold

Buy and Hold BH) buys the index on the first day of the tradingiqu and sells it
on the last day, i.e. it is invested in the indmaf the first day of the buying period
until the last day of the following selling perio@ihere are only two transactions in
every trading period.

The following assumptions apply for all tested aitions.

1. There is an initial cash value greater zero.

2. Possible transaction prices are daily closing grice

3. In each buying period all cash is exchanged intatkdex and in each selling
period the index is exchanged into cash completely.

4. Transaction costs are not considered.

5. Minimum pricem, maximum priceM, and the length$_uof each buying
andT_vof each selling period are known.

6. Interest rate on cash is assumed to be zero.

The performance measures of the algorithms aretinealized geometric return
(GR) and the average trading period retuliR) Let d; andD; be the amount of cash
at the beginning and at the end of a trading periéteturnr; generated in a trading
periodi is calculated according to

r=D;/d (4-1)

Let n be the number of trading periods considered. Ewgtric return rate is based
on the assumption that we reinvest the portfoli@ath trading period completely
for trading in the next periodtl,i = 1, ...,n-1, until the end of the investment
horizon. If the investment horizonlis> 1 yearGRis calculated according to

GR(N) = ([fi=1...n ri)(llh) (4-2)

The geometric return tells us which annualized grenince the algorithms could
achieve in the investment horizon. The averageoger@turn assumes that we only
invest in a trading period of given same length amerages the result over all trading
periods of the same length.

ARN) = ([Tiy, .p 1) ™" (4-3)

The average period return tells us which averagmpeance we could expect within
a trading period of given length.

We also calculate the worst case competitive ratid the empirical case competitive
ratio. The competitive ratios are calculated acitgyto
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¢ >OPT(l) / ON(l) whereON [1{ Threat Square ConstantBH} (4-4)

Let ¢, be the worst case competitive ratio and dgtbe the empirical case
competitive ratio. For the worst case competitiggorON(l) is the worst case return
which could have been achieved taking the datheptoblem instance into account;
for the empirical case competitive rat@N(l) is the empirical case return which
actually was achieved by an online algorithm anckisulated according to (4-2) and
(4-3).

Worst case competitive ratios we only consideraigiorithmsThreatand Sjuare
For Threatwe use its empirical case competitive ratio awitgst case competitive
ratio because the empirical ratio can be achielsd ia the worst case. Thus, of
Threatis the same as itg and it is calculated according to (2-3).

For Squarewe must calculate the worst case return;nhét) and M(u) be the
bounds for the buying period and letm(v) and M(v) be the bounds for the selling
period v; the worst case competitive ratio for buyingnigu)/SQRTm(u)-M(u)] =
SQRTmM(u)/M(u)] and for selling iM(v)/SQRTM(v)-M(v)] = SQRTM(v)/m(v)]. For
the entire trading period we get a worst case ctithme ratio ¢, =
SQRT[M(u)-M(v)/m(u)-m(Vv)].

In order to find out howrhreatandSquarebehave relative to each other in the
empirical and in the worst case we calculate ferampirical case the ratio of the
achieved returns byhreatandSquare

GRThreat (n) / GRSquare(n) (4'5)

ARThreat (n) /ARSquare(n) (4'6)

For the worst case we want to know the ratio ofvtbbest case return dfthreatand
the worst case return &quare i.e. worst case returreat/ Square As ¢(Squarg
= OPT(l) / Squar€l) andc(Threa) = OPT(l) / Threa(l) we can calculate

c(Squarg / c(Threa) = (OPT(l) / Squarél)) / (OPT(l) / Threa(l)) 4-7)
=Threa(l) / Squarél)

to find the worst case ratio of the returns wh&heea(l) and Square(l) relate to
worst case performances of both algorithms.

5 Experimental Results

Clearly, all online algorithms (2) - (5) cannot b#d# benchmark algorith@PT. We
carried out simulation runs in order to find outahtine following measures compare:
(1) the empirical performance of the algorithms,
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(2) the empirical case competitive ratios found inekperiments,
(3) the worst case competitive ratios which could Hasen possible from the
experimental data,

(4) the performance ratioBhreat/ Squarein the empirical case and in the worst
case.

We answer these questions using the DAX 30 indea @& the 10 year interval
[1998, 2007]. We conducted experiments for the wholerval and for each year of
the interval. We calculated annualized geometriarns and we calculated average
period returns. Clearly, the answers generated freninterval data must basically be
the same as these generated from the yearly dagsefbre we only report on results
based on the average period returns from the alteiata in detail.

Question 1:
How does the empirical performance of the algorgloompare?

We calculated the experimental performance of the bnline algorithmsThreat
Square BH, andConstantand compared it t&PT according to (4-2) and (4-3). The
results are presented in TableThreatdominates all other online algorithn®&quare
dominatesBH and Constant Constantis dominated by all other online algorithms
except for the 65 days trading period; h€enstanthas a better performance than
BH. In most cases we see that the longer the tragieigods the better the
performance 0OPT, Threat Square andBH.

1998-2007 Empirical case: Average period return

Period Length 10days| 20days 65 days| 130days| 260 days
OPT 1.0308 1.0562 1.1320 1.2110 1.2923
Threat 1.0236 1.0376 1.0807 1.0981] 1.1636)
Square 1.0218 1.0302 1.0602 1.0528 1.1220
BH 1.0024 1.0050 1.0137 1.0242 1.0568
Constant 1.0005 1.0028 1.0154 1.0099 0.9930

Table 1: Average period returns for the interval 1998-2007

If we take annualized geometric return (cf. (44B)p account we could see that
all algorithms generate better returns for moreoitsn) trading periods. This
observation can be generalized to such algorithiehvgenerate positive period
returns. We conclude that in our experiments ktater to havenoretrading periods
than longer ones applying algorithms generating positive meurro answer this
guestion more generally we have to compgrandr,’ wherer, (r,) is the average

return of a period with length(m) andx (y) is the number of trading periods of length
| (m) for the whole trading horizon.

Question 2:
How do the empirical case competitive ratios fouimthe experiments compare?
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Clearly, the answers to Question 1 regarding thaive performance comparison of
the algorithms are also true for Question 2 bec#tuseaumerator in (4-4) is constant
for all algorithms in each period. We calculated ttumerical values of the empirical
competitive ratios achieved by all algorithms adoog to (4-4). The results are
shown in Table 2. The shorter the trading periogjie the better is the empirical case
competitive ratio of the algorithms, i.e. the algons loose performance compared to
OPTthe longer the periods are. Taking the resultdHerannualized geometric return
into account all algorithms loose performance camgao OPT the more trading
periods are considered.

1998-2007 Empirical case: Competitive ratio average period return

Period Length 10days| 20days 65 days| 130days| 260 days
OPT/Threat 1.0070 1.0179 1.0475 1.1028 1.1106)
OPT/Square 1.0088 1.0252 1.0677, 1.1504 1.1517
OPT/BH 1.0283 1.0509 1.1167| 1.1824 1.2228
OPT/Constant 1.0302 1.0532 1.1148 1.1991 1.3014

Table 2: Empirical case competitive ratios for the intert&98-2007

Question 3:

How do the worst case competitive ratios which ddwdve been possible from the
experimental data compare?

We calculated the worst case competitive ratiosTloreat and Squarewhich are
possible from the experimental data set. The result shown in Table 3. Using the
worst case criteridhreat clearly outperformsSquare i.e. if we like to minimize
worst case returns we chooBereat Moreover the performance 8fjuaregets worse
compared ta hreatthe longer the trading periods are.

1998-2007 Worst case: Competitiveratio average period return

Period Length 10days| 20days 65 days| 130days| 260 days
OPT/Threat 1.0070 1.0179 1.0475 1.1028 1.1106)
OPT/Square 1.0302 1.0529 1.1109 1.1962 1.2913

Table 3: Worst case competitive ratios for the interval 129807

Question 4:
What are the performance ratios Threat / Squartéempirical case and in the
worst case?

ComparingThreat and Squareby their worst case competitive ratio we know that
Threat outperforms Square (Table 3). This is also true for the empirical eas
competitive ratio we found in the experiments (EaB). Answering Question 4 we
want to know how the ratios of the worst case antth@® empirical case differ, i.e. in
which case the out-performance is greater. The anssvgiven in Table 4. Using
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average period return as performance measuretibasd®etween 2.3% and 16.3% in
the worst case and only between 0.18% and 4.31%heénexperiments. So we
conclude that trading wittBquareis a good alternative tdhreat in practical
applications especially if we want to reduce thenbar of transactions which are
generated byhreat

1998-2007 Empirical and wor st caseratio average period return:
Threat / Square

Period Length 10days| 20days 65 days| 130days| 260 days

Empirical Case 1.0018 1.0072 1.0193 1.0431] 1.0370

Worst Case 1.0230 1.0343 1.0605 1.0847 1.1627

Table 4: Empirical case versus worst case ratio

Question 5:
Can the answers to Questions 1 and 2 be confirmpeddtatistical t-test

We use a studemtest to test for significance. The following inpdta is used:

- For trading algorithm¥hreat Square andConstantall period returns are
used; e.g. for period length 10 days within they&8r interval 260 period
returns are generated, for period length 20 dagspEBiod returns are
generated, etc.

- ForBH the same number of period returns are calculatadydaily returns
O/ Gy With t > 1.

The t-test generates useful output if the sample simenbrer of period returns) is
greater 30 or the period returns are normally ithisted. To test for normality we use
the Jarque-Bera (JB) test. The null hypothesish& the period returns of each
algorithm and each trading period length are ndsmadistributed, i.e. for four
algorithms and five different period lengths we doct 20 JB tests. The JB test tests
the normality of large samples using both skewrsss$ kurtosis measures, since
samples from a normal distribution have an expedieelvness and an expected
kurtosis of 0, cfKnown and KisHKK02], Gunasekarage and PowfgP01]. Results
of the JB test are shown in Table 5. The “yes”ieatmean that the null hypothesis
cannot be rejected; the “no” entries mean thatnthle hypothesis could be rejected,
i.e. the period returns are not normally distriloute

1998-2007 Jarque-Bera Test for Normal Distribution
Period Length 10 dayq 20 dayq 65 dayq 130 dayg 260 days
Threat no no yes yes yes
Square no no yes yes yes
BH no no no no no
Constant no no yes yes yes

Table 5: Jarque-Bera Test for Normality Results

We use a-test to test the algorithms against each othee. rithl hypothesis is that
the 10 year average of the period returns of ogerdéhm A, is less or equal {<than
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these of another algorith#,. Before running a-test we have to check if the period
returns of the compared two algorithniggst samples) have equal variances or not. If
data is normally distributed, the Bartlett testised to test the variances; if not we use
the Levene tesBrock et al[BLL92], Known and KisHKK02], Mills [Mil98]). Both
tests test the null hypothesis that the variancessa thet-test samples are equal
against the alternative that at least two variarmresdifferent. Equal variance across
t-test samples is called homoscedastic or homogenéivariances; non-equality is
called heteroskedastic. Depending on the resultthéovariances different kinds tf
tests are used.

The t-test statistics are calculated for the 10 yeasriratl depending on the results
of the normality test and the variance equalityt fes the algorithms. We use a
significance level of 5 percent. The following enigal findings are tested for each
trading period length, i.e. for each pair of aljums five t-tests for each null
hypothesis (10, 20, 65, 130, 260 days). As we gbspairs of algorithms 36tests
were conducted. Sample sizes for each trading gpedater to the number of trading
periods in the interval 01-01-1998 to 12-31-200&, for trading period length of 10
days we have a sample of 260 returns, for tradergpd length 20 we have a sample
of 130 returns, etc. Results are shown in Tabléh lower thep-value, the more
"significant" is the result of thetest concerning the rejection Bf. The “no proof”
entries mean that the null hypotheligcannot be rejected, i.e. we cannot prove that
A;> Ay the “true” entries mean that the null hypothé$jscould be rejected, i.é\; >
A, is true.

Period Length | 10 days| 20 days| 65 days| 130 days| 260 days
(¢} Ho: Threat < Square
Threat > Square | no proof| no proof | no proof| no proof | no proof
p-value 24.55%| 6.99%| 9.49%| 6.70%| 27.77%
2 Ho: Threat < BH
Threat > BH true true true true true
p-value 0.00%| 0.00%| 0.00%| 0.00%| 0.41%
3 Ho: Threat < Constant
Threat > Constant | true true true true true
p-value 0.00%| 0.00%| 0.01%| 0.19%| 1.92%
(4) Ho: Square< BH
Square > BH true true true true true
p-value 0.00%| 0.00%| 0.00%| 0.81%| 1.19%
(5) Ho: Square < Constant
Square > Constant | true true true no proof | no proof
p-value 0.00%| 0.00%| 0.27%| 8.57%| 5.26%
(6) Ho: BH < Constant
BH > Constant no proof| no proof| no proof| no proof | no proof
p-value 65.64%| 85.23%| 95.31%| 79.94%| 56.96%

Table 6: Comparing the Trading Algorithms
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When testing the null hypothesis that the 10 yearage of the period returns of
Constantis less or equal than the 10 year average of éng returns of BHH:
Constant BH) the null hypothesis cannot be rejected in fowsesa(10, 20, 130, 260
days). For 65 days thetest result is highly significant, rejecting thallnhypothesis
with p-value 4.69%.

6 Conclusions

In order to answer the five questions raised irs thaper simulation runs with
different number and lengths of trading periods evperformed. We assumed the
precise values fam, M, andT to be known. The answers to Questions 1, 2, asme: 5
summarized in Table 7. The “no” entries in colunmrtest” mean that the null
hypothesis could not be rejected; the “yes” entgans that the null hypothesis could
not be rejected for two period lengths.

10 Year Interval 1998-2007

Average Period Return Simulation t-test
(1) | Threatdominatessquare yes no
(2) | Threatdominates8H yes yes
(3) | ThreatdominategConstant yes yes
(4) | Squaredominates8H yes yes
(5) | Squaredominateonstant yes (yes)
(6) | BH dominategConstant yes no

Table 7: Summary of simulation and t-test results

The table shows that the results found in the strar runs could be confirmed
clearly in three cases and weakly in one case. i§hst only true for average period
returns but also for the corresponding competitat®. Where the results from the
simulation runs cannot be confirmed by thest the return values generated by the
two algorithms are too close to produce signifiean8ince thet-ratios assume
normality, stationarity, and time-independent dlattions it would be interesting to
perform a bootstrap procedure to calculate critic@les when dealing with small
samples, cfTabak and LimdTLO9].

The conclusion is thathreat clearly outperformd88H and Constant This result
was achieved without considering transaction cdétgansaction costs have to be
considered Threat still outperforms Constant because it never generates more
transactions. If we want to reduce transactionscesperimental results show that
Squareis a good alternative tdhreat i.e. it also outperform8H. The worst
performance found in the simulation is achievedlonstant. BHooses performance
relative to Threat and Squarethe shorter the periods are. For the worst catie ra
average period return values are increasing thgelothe periods are. The worst case
performance is the greater the greater the diffsrénm andM which gets greater
with longer periods.

One might argue that the comparisoriTafeatand Squarewith BH andConstant
is not appropriate because the first two algoritluses information about future prices
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while the latter two do not. It is also to be exgecthat algorithms which use more
information should perform better than these whddh not. Note, thaBH and
Constantcould also be modified such that they would u$erination about andM.
But in reality no algorithm can rely on the correeds of information about future
prices and forecasts fon andM. A suitable procedure for estimatingandM is an
important factor to provide a good online algorithitnalso would be of interest to
assume that we do not have forecastsnfioand M. One approach is to observe a
certain numbek of theT prices within a time horizon witk< T and then trade to the
next best priceg(t) > max (<min) g(t) |t = 1, ..., kK (cf. the approach to the
secretary’s problem iRreeman[Fre83] and~erguson[Fer89]).

It also would be interesting to analyse the perfomoe of Threat compared to
SquareandBH in further experiments taking transaction coste account (possibly
including discounting the payments). Moreover oweld investigate howlhreat
performs in comparison to other popular tradingesulike Moving Averageand
Trading Range Breakout
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