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Abstract. Trading decisions in financial markets can be supported by the use of 
online algorithms. We evaluate the empirical performance of a threat-based 
online algorithm and compare it to a reservation price algorithm, an average 
price algorithm and to buy-and-hold. The effectiveness of the algorithms is 
analyzed with historical DAX prices for the years 1998 to 2007. Performance 
measures are geometric return and period return. The performance of the threat-
based algorithm found in the simulation runs dominates all other investigated 
algorithms. We also compare its performance to results from worst case 
analysis and conduct a t-test.  
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1 Introduction 

Many major financial markets are electronic market places where trading is carried 
out automatically. Trading algorithms which have the potential to operate without 
human interaction are of great importance in electronic financial markets. Very often 
such algorithms are based on data from technical analysis as described in Brock et al. 
[BLL92], Mils [Mil98], Ratner and Leal [RL99], Kwon and Kish [KK02], and Shen 
[She03]. Many researchers have also studied trading algorithms from the perspective 
of artificial intelligence, software agents or neural networks cf. Feng et al. [FRS04], 
Silaghi and Robu [SR05] and Chavarnakul and Enke [CE08]. 

In order to carry out trading policies automatically they have to be converted into 
trading algorithms. Before a trading algorithm is applied one should be interested in 
its performance. The performance analysis of trading algorithms can basically be 
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carried out by three different approaches. One is Bayesian analysis where a given 
probability distribution for asset prices is a basic assumption. Another one is 
assuming strict uncertainty about asset prices and analyzing the trading algorithm 
under worst case outcomes. This approach is called worst case competitive analysis. 
The third one is a heuristic approach where trading algorithms are tested on historic 
data by simulation runs. In this paper we apply the third approach and compare the 
results to these of the second one. Note, that we do not deal with probabilities and we 
do not calculate risk measures based on probabilities. We do not want to explain 
market behaviour. We want to compare the performance of algorithms when we 
assume uncertainty of asset prices which are drawn from a given interval of minimum 
and maximum prices. 

We consider single and multiple trade problems and analyze a threat-based online 
trading algorithm from a worst case and an empirical case point of view based on 
experimental data. For the empirical case the actually observed performance is 
calculated and for the worst case the worst possible performance which could have 
been occurred is calculated when the experimental data is considered. Moreover we 
compare its performance to this of an optimal trading algorithm, and three other 
online algorithms based on reservation prices, average prices, and buy and hold.  

The reminder of this paper is organized as follows. In the next section the problem 
is formulated and worst case competitive analysis of the reservation price and the 
threat-based trading algorithms are performed. Section 3 gives a literature overview 
on heuristic trading rules for multiple trade problems. In Section 4 new trading rules 
based on online algorithms for this problem are introduced. Section 5 presents 
detailed experimental findings from our simulation runs. We finish with some 
conclusions and suggestions for future research in the last section. 

2 Problem Formulation 

If we trade in markets we are interested in buying at low prices and selling at high 
prices. Let us consider the single trade problem and the multiple trade problem with a 
finite trading horizon. In a single trade problem we search for the minimum price m 
and the maximum price M in a time series of prices once. At best we buy at m and sell 
later at M. Buying and selling can be interpreted as exchanging some asset d (e.g. 
cash) to some other asset y (e.g. stock). In a multiple trade problem we exchange 
assets more than once. If we buy and sell (exchange) assets p times we call the 
problem p-trade problem with p > 1. 

As we do not know future asset prices the decisions to be taken are subject to 
uncertainty. How to handle uncertainty for trading problems is discussed in El-Yaniv 
et al. [YFKT01]. Trading is represented by search. To solve financial search problems 
a trader which owns some asset at time t = 0 obtains price quotations q(t) with m < 
q(t) < M at points of time t = 1, 2, …, T. For each q(t) the trader must decide which 
fraction s(t) of his current asset he wants to sell at time t. At the last price q(T) the 
trader must sell all the remaining fractions of the asset he holds at the last point of 
time T of the trading horizon. It is assumed that the time interval [1, T] and the 
possible minimum and maximum prices m and M of the interval are known to the 
trader. The problem to determine s(t) for t = 1, 2, …, T is solved by online algorithms. 



Experimental Analysis of a Threat-based Online Trading Algorithm  3 

An algorithm ON computes online if for each j = 1, …, t-1, it computes an output 
for j before the input for j+1 is given. An algorithm computes offline if it computes a 
feasible output given the entire input sequence j = 1, …, t-1.We denote an optimal 
offline algorithm by OPT. An online algorithm ON is c-competitive if for any input I 

 

ON(I) > 1/c · OPT(I). (2-1) 

 
If the competitive ratio is related to a performance guarantee it must be a worst 

case measure. In such a case any c-competitive online algorithm can guarantee a 
value of at least the fraction 1/c of the optimal offline value OPT(I) no matter how 
unfortunate or uncertain the future will be. As we have a maximization problem c > 1 
the smaller c the more effective is ON. Later we will define a competitive ratio also 
for the empirical case. 
 

We analyse the competitive ratio of two online algorithms based on a reservation 
price policy (s(t)∈{0,1}) and on a threat based policy (0 < s(t) < 1). We differ 
between a worst case competitive ratio for search cs and a worst case competitive ratio 
for trading ct. 
 
(1) Reservation Price Policy 
For the search problem the selling rule introduced by El-Yaniv [Yan98] 
 

sell at the first price greater or equal to reservation price mMq ⋅=  

 

has a competitive ratio mMcs /=  where M and m are upper and lower bounds of 

prices q(t) with q(t)∈ [m, M]. cs measures the worst case in terms of maximum and 
minimum prices. This result can be transferred to a single trade problem if we modify 
the rule to 
 

buy the asset at the first price smaller or equal and sell the asset at the first price 

greater or equal to the reservation price mMq ⋅= . 

 
In the single trade problem we have to carry out the search twice. In the worst case we 
get a competitive ratio of cs for buying and the same competitive ratio of cs for selling 
resulting in an overall competitive ratio for the single trade problem of ct = cs·cs = 
M/m. 

In general for the p-trade problem we get a worst case competitive ratio of 
 

ct(p) = ∏i=1,…,p (M(i)/m(i)) (2-2) 

 
If m(i) and M(i) are constant for all trades ct(p) = (M/m)p

. The ratio ct(p) can be 
interpreted as the geometric return we can achieve by buying and selling assets 
sequentially as stated in Mohr and Schmidt [MS08]. 
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(2) Threat-based Policy 
For the search problem the following procedure is suggested in El-Yaniv et al. 
[YFKT01]: 
Choose a competitive ratio c and select a trading algorithm which can guarantee c.  

(2.1) Consider exchanging asset d for asset y only when the current exchange rate 
q(t) (number of assets y for one asset d) is the highest seen so far; 

(2.2) Whenever you exchange asset d for asset y at time t convert enough to ensure 
that the given c would be obtained if an adversary dropped the next exchange rate 
q(t+1) to the minimum possible rate m and kept it there until the end of the time 
horizon T, i.e. that this threat exists. 

Let k < T be the remaining exchange rates in the time series. Let q’(1) be the first 
exchange rate of this time series. Let ck(q’(1)) be a competitive ratio which is 
achievable on a sequence of k exchange rates q’(1), …, q’(k). The achievable 
competitive ratio ck(q’(1)) for k remaining trading days is determined by  
 

ck (q’(1))= 1+((q’(1)-m)/q’(1))*(k-1)*(1-[(q’(1)-m)/(M-m)]^(1/(k-1)) (2-3) 

 
The optimal competitive ratio for the search problem is calculated by c = sup ck 

(q(1), q(2), …, q(k) | k < T), cf. El-Yaniv et al. [YFKT92 and 01]. For each trade we 
conduct the threat-based algorithm twice, once for buying and once for selling. The 
competitive ratio of the threat-based algorithm for the trading problem can be 
calculated in the same way as it is done for the reservation price algorithm described 
in 2.1. 

In the following we apply the reservation price and the threat-based algorithms to 
multiple trade problems and compare it to two other trading algorithms. Before doing 
that we review experimental results for heuristic trading rules from the literature. 

3 Related Work 

Experimental analysis of online algorithms in the field of trading is a new area. Mohr 
and Schmidt [MS08] investigate the empirical and the worst case performance of a 
reservation price policy introduced by El Yaniv [Yan98] and compare it to Buy and 
Hold. Experimental analysis of online algorithms in other fields can be found in 
Karlin [Kar98]. 

There are more results on experimental studies of trading algorithms. 
Unfortunately, this analysis is restricted to empirical results and does not take into 
account worst case results. We give a brief overview on the experimental studies on 
heuristic trading policies for multiple trade problems from the literature. Here the 
comparison to Buy and Hold is of prime interest. 

Two trading algorithms suggested by Brock et al. [BLL92], the Moving Average 
(MA) crossover and the Trading Range Breakout (TRB) (also known as Momentum), 
are of major interest in the literature. Mills [Mil98], Ratner and Leal [RL99], Kwon 
and Kish [KK02], Chang et al. [CLT04] and Tabak and Lima [TL09] also investigate 
these rules. 
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Brock et al. [BLL92] investigate the rules MA crossover and TRB by conducting 
experiments with a price-weighted index (Dow Jones Industrial Average (DJIA)) for 
the time period from 1897 to 1986. The returns on buy (sell) signals on the DJIA are 
compared to returns from simulated comparison series generated by the following 
models: autoregressive (AR(1)), generalized autoregressive conditional 
heteroskedasticity in mean (GARCH-M) and an exponential GARCH. The returns 
obtained from buy (sell) signals of the trading rules are not likely to be generated by 
these three models. The results provide empirical support for utilizing technical 
trading rules where returns outperform not only Buy and Hold but also the 
autoregressive (AR(1)), generalized autoregressive conditional heteroskedasticity in 
mean (GARCH-M), and an exponential GARCH model. 

Mills [Mil98] investigates the same two types of trading rules as in Brock et al. 
[BLL92] by conducting experiments on daily data of the London Stock Exchange 
FT30 index for the time intervals 1935-1954 and 1975-1994. In addition, trading 
signals generated by the geometric MA and the arithmetic MA are calculated. All 
rules are compared to Buy and Hold. The geometric MA gave an almost identical set 
of signals as the conventional (arithmetic) MA. Until 1980 all investigated trading 
rules outperform Buy and Hold. The results of Mills [Mil98] are consistent, in almost 
every respect, with those of Brock et al. [BLL92] until 1980. But from then on Buy 
and Hold clearly dominates all other trading rules. The sample used in Brock et al. 
[BLL92] ended in 1986; so there was not the data to analyze structural shifts that 
might have taken place starting in 1982. 

Ratner and Leal [RL99] compare the MA crossover rules introduced by Brock et 
al. [BLL92] to Buy and Hold. Trading rules are investigated in ten emerging equity 
markets in Latin America and Asia from January 1, 1982 to April 1, 1995. The 
average returns considering transaction costs for each rule and country are compared 
to Buy and Hold the S&P500 and Nikkei225 indices. Results show that these trading 
rules applied to emerging markets do not have the ability to outperform Buy and 
Hold. 

Kwon and Kish [KK02] extend the work of Brock et al. [BLL92] in two ways. First 
by investigating the predictive ability of historical data to forecast future prices for the 
New York Stock Exchange index (NYSE) and the National Association of Security 
Dealers Automatic Quotations index (NASDAQ). Second by including another MA 
trading rule called Moving Average with Trading Volume (MAV). The experimental 
study uses historical data from July 1962 to December 1996 for NYSE and from 
January 1972 to December 1996 for NASDAQ. The results show that the trading 
rules have potential to outperform Buy and Hold. Kwon and Kish [KK02] compare 
buy, sell, and buy-sell returns with returns from the random walk model. The results 
support the price-weighted index (Dow Jones Industrial Average (DJIA)) analysis of 
[BLL92] by showing that the technical trading rules add value by capturing profit 
opportunities when compared to Buy and Hold. 

Chang et al. [CLT04] test whether returns for emerging stock markets in US and 
Japan are predictable. Predictability is analyzed by means of multivariate variance 
ratios using heteroscedastic robust bootstrap procedures. The MA and TRB rules 
introduced by Brock et al. [BLL92] are employed and compared to buy and hold. 
Results show that there is some evidence of forecasting power. When trading costs 
are taken into account only a few rules generate positive excess returns. Chang et al. 
[CLT04] check for robustness by analyzing returns from 1559 different trading rules, 
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testing different sub-samples, analyzing returns in bear and bull markets, and also 
comparing results found for emerging markets to the US and Japan. For the US the 
MA trading rules do not seem to have forecasting power for the recent sample used by 
Chang et al. [CLT04].  

Tabak and Lima [TL09] also investigate the predictive power of the MA and TRB 
rules introduced by Brock et al. [BLL92] for the Brazilian exchange rate for the 2003 
to 2006 period. A bootstrap procedure is employed to test for the predictability of 
exchange rates. Furthermore, the ability of the trading rules to generate significant 
higher returns compared to the buy and hold returns is tested. Results show that the 
excess return generated by the MA and TRB rules is not significant, suggesting that 
such predictability is not economically significant. Their results are consistent with 
those of Chang et al. [CLT04]. 

Shen [She03] compares simple market-timing heuristics to Buy and Hold. Trading 
signals are generated by the value of the short spread between the Earning-Price (EP) 
ratio and selected interest rates using S&P500 data from 1970 to 2000. Trading rules 
either invest in the S&P500 index or in treasury bills over a period of one month 
depending on predefined thresholds. If the spread is above some threshold level, the 
rule invests in the S&P500 index for the next month and if the spread is below this 
level, the portfolio is liquidated at the end of the month and the money is invested in 
30-day treasury-bills for the next month. At the end of each month spreads are 
considered again. The portfolio return is compared with these of S&P500 index Buy 
and Hold for 1970 to 2000. Results show that the trading rule outperforms the 
S&P500 index generating higher mean returns. In particular, the rule based on the 
spread between the EP ratio and a short-term interest rate beats the S&P500 index 
even when transaction costs are taken into account. 

Feng et al. [FRS04] and Silaghi and Robu [SR05] evaluate different heuristic 
trading rules but unfortunately do not compare the results to Buy and Hold.  

Feng et al. [FRS04] evaluate stock trading rules in the context of the Penn-Lehman 
Automated Trading simulator. Two rules suggested by Ronggang and Stone [RS03] 
are used. The first rule is a market-making rule exploiting market volatility without 
predicting the direction of the stock price movement. The second rule is a reverse rule 
based on technical analysis. Both rules trade the Microsoft Corp. (MSFT) asset over 
15 days from February 24, 2003 to March 18, 2003. The market-making rule fixes a 
selling price x and a buying price y for MSFT. When prices go beyond x a sell order is 
placed and when prices drop on y a buy order is placed. The reverse rule sells when 
prices tend to move upwards and buys when prices tend to move downwards. The 
experimental analysis is designed as a tournament with three rounds, each lasting one 
week. Both rules survived the first round; the market-making rule did not survive the 
second round. The reverse rule won the tournament but without achieving any profit.  

Silaghi and Robu [SR05] compare traditional price-based rules to rules based on 
order book information. Tested rules are called Static Order Book Imbalance (SOBI), 
Volume Average Weighted Prices (VWAP), Trend Following (TF) and Reverse 
Policy (RP). SOBI buys (sells) if order book sell prices are greater (smaller) than the 
order book buy prices. VWAP buys (sells) if the markets average buying (selling) 
prices are greater (smaller) than VWAP buying (selling) prices. TF calculates a long 
and a short trend line from ticker prices and buys (sells) if slopes of long (short) and 
short (long) match (both negative / positive). The fourth rule implemented is the 
reverse rule discussed by Feng et al. [FRS04]. All four rules were tested over a 15-
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day period from January 5, 2004 to January 23, 2004 with NASDAQ order book data. 
Three mixed policies which combine two, three or all of the four rules were 
considered: SOBI+VWAP+RP+TF, SOBI+RP and SOBI+RP+TF. Results compare 
achieved returns and the Sharpe ratio. For a period length of 15 days the best 
combined rule is SOBI+RP+TF in terms of achieved return; the reverse rule is the 
overall winner in terms of the Sharpe ratio. 

Chavarnakul and Enke [CE08] compare combinations of moving averages to rules 
based on individual moving averages and to Buy and Hold. The trading rules are 
based on the Volume Adjusted Moving Average (VAMA) and the Ease of Movement 
(EMV) indicators. VAMA is a moving average, where prices are replaced by volume. 
EMV illustrates the relationship between the rate of price and volume change of an 
asset. Trading is simulated over a time horizon of 1508 days from January 1998 to 
December 2003. At each point of time only one asset of the S&P500 index is in the 
portfolio. Different types of period lengths are investigated: 1 week (5-days), 4 weeks 
(21-days) and 13 weeks (55-days). Trading signals are generated by VAMA and 
EMV with and without the use of a Neural Network (NN). Transaction costs are not 
considered. The VAMA rule buys if the price of the asset is smaller than the VAMA 
and sells if the price is greater. The EMV trading rule buys when the smoothing value 
of EMV crosses above zero from below and sells when the smoothing value of EMV 
crosses below zero from above. Trading rules might not be executed depending on the 
results of the NN which predict the next day’s VAMA and EMV. Different 
combinations of trading rules are tested. VAMA+NN, VAMA+NN+Filter, 
VAMA+NN+SMA, and EMV+NN+VAMA. Benchmarks are VAMA, EMV, a 
Single Moving Average (SMA) and Buy and Hold. Results show that trading with 
NN support is helpful to generate better trading decisions. The combined rule 
EMV+NN+VAMA outperforms all benchmarks in terms of average returns. 

4 Experiments 

Our experiments are based on the DAX 30 index for the time interval 01-01-1998 to 
12-31-2007. We excluded weekends from this interval resulting in 260 days for each 
year. Trading is carried out by exchanging cash into the index (buying) and by 
exchanging the index back into cash (selling). No other assets than cash and index are 
considered for trading.  

For the multiple trade problem we divide the time horizon into several trading 
periods of different length. Each trading period of length K consists of two sub-
periods T_u =  2/K  for buying (buying period u) and T_v =  2/K  for selling 

(selling period v) with K = T_u + T_v. We differ between trading periods with 260, 
130, 65, 20, and 10 days: one year (K=260 days, 130 days for buying (selling)), six 
months (130 / 65 (65)), three months (65 / 33 (32)), one month (20 / 10 (10)), and two 
weeks (10 / 5 (5)). With this arrangement we exclude trading on weekends but other 
country-specific non-trading days are not excluded. E.g. in 2007 we have only 252 
trading days for the K = 260 days period. For the 130 buying days we have only T_u 
= 127 days where buying is possible and for the 130 selling days we have only T_v = 
125 days where selling is possible. The number of possible trading days in each 
period is always smaller or equal than the period length. When we do not need to 
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differ between buying and selling periods we denote the number of days in one period 
simply by T. 

Within each buying period we must exchange all cash into the index and within 
each selling period we must exchange all money invested in the index back into cash. 
At the end of the last day of each buying (selling) period all cash (index) has been 
exchanged into the index (cash). We assume that for each buying (selling) period 
there are precise estimates of the possible maximum price M and the possible 
minimum price m.  

In our experiments we investigate the following five trading algorithms: 

(1) Optimal Trading 

Optimal Trading (OPT) is an offline algorithm which achieves the best possible return 
in each trading period. It is assumed that OPT knows all prices of a period. In each 
buying period u OPT will buy at the minimum realized price pmin > m(u) and will sell 
in each selling period v at the maximum realized price pmax < M(v). OPT carries out 
only two transactions in every trading period.  

(2) Threat-based Trading 

At every time an exchange is carried out the threat-based algorithm (Threat) 
calculates the achievable competitive ratio for each period and buys or sells the 
corresponding quantities such that the achievable competitive ratio is also realized. 
There might be as many transactions as there are days T in a trading period.  

In our implementation of the algorithm we must ensure that the competitive ratio 
for each period is never smaller than one and that not more than the available asset 
values are traded. 

(3) Reservation Price Trading  

For every period the reservation price algorithm (Square) calculates reservation prices 
RP(t) for each day t. In case Square has to buy (sell) the index the first price q(t) with 
q(t) < (>) RP(t) is accepted for buying (selling). If there was no such price then 
buying (selling) has to be done on the last day T of a period. There are only two 
transactions in every trading period.  

(4) Average Price Trading 

The average price algorithm (Constant) buys (sells) the index with the constant 
fraction 1/T_u (1/T_v) in every buying (selling) period. There are T_u + T_v 
transactions in every trading period. 
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(5) Buy and Hold  

Buy and Hold (BH) buys the index on the first day of the trading period and sells it 
on the last day, i.e. it is invested in the index from the first day of the buying period 
until the last day of the following selling period. There are only two transactions in 
every trading period.  

 
The following assumptions apply for all tested algorithms.  

1. There is an initial cash value greater zero. 
2. Possible transaction prices are daily closing prices. 
3. In each buying period all cash is exchanged into the index and in each selling 

period the index is exchanged into cash completely. 
4. Transaction costs are not considered. 
5. Minimum price m, maximum price M, and the lengths T_u of each buying 

and T_v of each selling period are known. 
6. Interest rate on cash is assumed to be zero. 

 
The performance measures of the algorithms are the annualized geometric return 

(GR) and the average trading period return (AR). Let di and Di be the amount of cash 
at the beginning and at the end of a trading period i. Return r i generated in a trading 
period i is calculated according to  
 

r i = Di / di (4-1) 

 
Let n be the number of trading periods considered. The geometric return rate is based 
on the assumption that we reinvest the portfolio of each trading period i completely 
for trading in the next period i+1, i = 1, …, n-1,  until the end of the investment 
horizon. If the investment horizon is h > 1 year GR is calculated according to 

 

GR(n) = (∏i=1,…,n r i)
(1/h) (4-2) 

 
The geometric return tells us which annualized performance the algorithms could 
achieve in the investment horizon. The average period return assumes that we only 
invest in a trading period of given same length and averages the result over all trading 
periods of the same length.  

 

AR(n) = (∏i=1,…,n r i)
(1/n) (4-3) 

 
The average period return tells us which average performance we could expect within 
a trading period of given length. 

 
We also calculate the worst case competitive ratio and the empirical case competitive 
ratio. The competitive ratios are calculated according to 

 



Günter Schmidt, Esther Mohr, Mike Kersch  10 

c > OPT(I) / ON(I) where ON ∈{ Threat, Square, Constant, BH} (4-4) 

 
Let cw be the worst case competitive ratio and let ce be the empirical case 

competitive ratio. For the worst case competitive ratio ON(I) is the worst case return 
which could have been achieved taking the data of the problem instance into account; 
for the empirical case competitive ratio ON(I) is the empirical case return which 
actually was achieved by an online algorithm and is calculated according to (4-2) and 
(4-3). 

Worst case competitive ratios we only consider for algorithms Threat and Square. 
For Threat we use its empirical case competitive ratio as its worst case competitive 
ratio because the empirical ratio can be achieved also in the worst case. Thus, cw of 
Threat is the same as its ce and it is calculated according to (2-3). 

For Square we must calculate the worst case return; let m(u) and M(u) be the 
bounds for the buying period u and let m(v) and M(v) be the bounds for the selling 
period v; the worst case competitive ratio for buying is m(u)/SQRT[m(u)·M(u)] = 
SQRT[m(u)/M(u)] and for selling is M(v)/SQRT[m(v)·M(v)] = SQRT[M(v)/m(v)]. For 
the entire trading period we get a worst case competitive ratio cw = 
SQRT[M(u)·M(v)/m(u)·m(v)]. 

In order to find out how Threat and Square behave relative to each other in the 
empirical and in the worst case we calculate for the empirical case the ratio of the 
achieved returns by Threat and Square. 
 

GRThreat (n) / GRSquare (n) (4-5) 

 

ARThreat (n) / ARSquare (n) (4-6) 

 
For the worst case we want to know the ratio of the worst case return of Threat and 

the worst case return of Square, i.e. worst case returns Threat / Square. As c(Square) 
= OPT(I) / Square(I) and c(Threat) = OPT(I) / Threat(I) we can calculate 
 

c(Square) / c(Threat) = (OPT(I) / Square(I)) / (OPT(I) / Threat(I))  

= Threat(I) / Square(I) 

(4-7) 

 
to find the worst case ratio of the returns where Threat(I) and Square (I) relate to 
worst case performances of both algorithms. 

5 Experimental Results 

Clearly, all online algorithms (2) - (5) cannot beat the benchmark algorithm OPT. We 
carried out simulation runs in order to find out how the following measures compare: 

(1) the empirical performance of the algorithms, 
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(2) the empirical case competitive ratios found in the experiments, 
(3) the worst case competitive ratios which could have been possible from the 

experimental data,  
(4) the performance ratios Threat / Square in the empirical case and in the worst 

case. 
 
We answer these questions using the DAX 30 index data for the 10 year interval 
[1998, 2007]. We conducted experiments for the whole interval and for each year of 
the interval. We calculated annualized geometric returns and we calculated average 
period returns. Clearly, the answers generated from the interval data must basically be 
the same as these generated from the yearly data. Therefore we only report on results 
based on the average period returns from the interval data in detail. 
 
Question 1:  
How does the empirical performance of the algorithms compare? 
 
We calculated the experimental performance of the four online algorithms Threat, 
Square, BH, and Constant and compared it to OPT according to (4-2) and (4-3). The 
results are presented in Table 1. Threat dominates all other online algorithms. Square 
dominates BH and Constant. Constant is dominated by all other online algorithms 
except for the 65 days trading period; here Constant has a better performance than 
BH. In most cases we see that the longer the trading periods the better the 
performance of OPT, Threat, Square, and BH. 
 
1998-2007 Empirical case: Average period return 

Period Length  10 days 20 days 65 days 130 days 260 days 
OPT 1.0308 1.0562 1.1320 1.2110 1.2923 

Threat 1.0236 1.0376 1.0807 1.0981 1.1636 

Square 1.0218 1.0302 1.0602 1.0528 1.1220 

BH 1.0024 1.0050 1.0137 1.0242 1.0568 

Constant 1.0005 1.0028 1.0154 1.0099 0.9930 

Table 1: Average period returns for the interval 1998-2007 
 

If we take annualized geometric return (cf. (4-2)) into account we could see that 
all algorithms generate better returns for more (shorter) trading periods. This 
observation can be generalized to such algorithms which generate positive period 
returns. We conclude that in our experiments it is better to have more trading periods 
than longer ones applying algorithms generating positive returns. To answer this 
question more generally we have to compare r l

x and rm
y where r l (rm) is the average 

return of a period with length l (m) and x (y) is the number of trading periods of length 
l (m) for the whole trading horizon. 
 
Question 2:  
How do the empirical case competitive ratios found in the experiments compare? 
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Clearly, the answers to Question 1 regarding the relative performance comparison of 
the algorithms are also true for Question 2 because the numerator in (4-4) is constant 
for all algorithms in each period. We calculated the numerical values of the empirical 
competitive ratios achieved by all algorithms according to (4-4). The results are 
shown in Table 2. The shorter the trading period length the better is the empirical case 
competitive ratio of the algorithms, i.e. the algorithms loose performance compared to 
OPT the longer the periods are. Taking the results for the annualized geometric return 
into account all algorithms loose performance compared to OPT the more trading 
periods are considered. 
 
1998-2007 Empirical case: Competitive ratio average period return 

Period Length  10 days 20 days 65 days 130 days 260 days 
OPT/Threat 1.0070 1.0179 1.0475 1.1028 1.1106 

OPT/Square 1.0088 1.0252 1.0677 1.1504 1.1517 

OPT/BH 1.0283 1.0509 1.1167 1.1824 1.2228 

OPT/Constant 1.0302 1.0532 1.1148 1.1991 1.3014 

Table 2: Empirical case competitive ratios for the interval 1998-2007 
 
 
Question 3:  
How do the worst case competitive ratios which could have been possible from the 
experimental data compare?  
 
We calculated the worst case competitive ratios for Threat and Square which are 
possible from the experimental data set. The results are shown in Table 3. Using the 
worst case criteria Threat clearly outperforms Square, i.e. if we like to minimize 
worst case returns we choose Threat. Moreover the performance of Square gets worse 
compared to Threat the longer the trading periods are. 
 
1998-2007 Worst case: Competitive ratio average period return 

Period Length  10 days 20 days 65 days 130 days 260 days 
OPT/Threat 1.0070 1.0179 1.0475 1.1028 1.1106 

OPT/Square 1.0302 1.0529 1.1109 1.1962 1.2913 

Table 3: Worst case competitive ratios for the interval 1998-2007 
 
 
Question 4:  
What are the performance ratios Threat / Square in the empirical case and in the  
worst case? 
 
Comparing Threat and Square by their worst case competitive ratio we know that 
Threat outperforms Square (Table 3). This is also true for the empirical case 
competitive ratio we found in the experiments (Table 2). Answering Question 4 we 
want to know how the ratios of the worst case and of the empirical case differ, i.e. in 
which case the out-performance is greater. The answer is given in Table 4. Using 
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average period return as performance measure the ratio is between 2.3% and 16.3% in 
the worst case and only between 0.18% and 4.31% in the experiments. So we 
conclude that trading with Square is a good alternative to Threat in practical 
applications especially if we want to reduce the number of transactions which are 
generated by Threat. 
 
1998-2007 Empirical and worst case ratio average period return: 

Threat / Square 

Period Length  10 days 20 days 65 days 130 days 260 days 
Empirical Case 1.0018 1.0072 1.0193 1.0431 1.0370 

Worst Case 1.0230 1.0343 1.0605 1.0847 1.1627 

Table 4: Empirical case versus worst case ratio 
 
Question 5:  
Can the answers to Questions 1 and 2 be confirmed by a statistical t-test?  

 
We use a student t-test to test for significance. The following input data is used: 

- For trading algorithms Threat, Square, and Constant all period returns are 
used; e.g. for period length 10 days within the 10 year interval 260 period 
returns are generated, for period length 20 days 130 period returns are 
generated, etc.  

- For BH the same number of period returns are calculated using daily returns 
qt / qt-1 with t > 1. 

The t-test generates useful output if the sample size (number of period returns) is 
greater 30 or the period returns are normally distributed. To test for normality we use 
the Jarque-Bera (JB) test. The null hypothesis is that the period returns of each 
algorithm and each trading period length are normally distributed, i.e. for four 
algorithms and five different period lengths we conduct 20 JB tests. The JB test tests 
the normality of large samples using both skewness and kurtosis measures, since 
samples from a normal distribution have an expected skewness and an expected 
kurtosis of 0, cf. Known and Kish [KK02], Gunasekarage and Power [GP01]. Results 
of the JB test are shown in Table 5. The “yes” entries mean that the null hypothesis 
cannot be rejected; the “no” entries mean that the null hypothesis could be rejected, 
i.e. the period returns are not normally distributed. 

 
1998-2007 Jarque-Bera Test for Normal Distribution 
Period Length 10 days 20 days 65 days 130 days 260 days 

Threat no no yes yes yes 

Square no no yes yes yes 

BH no no no no no 

Constant no no yes yes yes 

Table 5: Jarque-Bera Test for Normality Results 
 
We use a t-test to test the algorithms against each other. The null hypothesis is that 

the 10 year average of the period returns of one algorithm A1 is less or equal (<) than 
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these of another algorithm A2. Before running a t-test we have to check if the period 
returns of the compared two algorithms (t-test samples) have equal variances or not. If 
data is normally distributed, the Bartlett test is used to test the variances; if not we use 
the Levene test (Brock et al. [BLL92], Known and Kish [KK02], Mills [Mil98]). Both 
tests test the null hypothesis that the variances across the t-test samples are equal 
against the alternative that at least two variances are different. Equal variance across 
t-test samples is called homoscedastic or homogeneity of variances; non-equality is 
called heteroskedastic. Depending on the results for the variances different kinds of t-
tests are used.  

The t-test statistics are calculated for the 10 year interval depending on the results 
of the normality test and the variance equality test for the algorithms. We use a 
significance level of 5 percent. The following empirical findings are tested for each 
trading period length, i.e. for each pair of algorithms five t-tests for each null 
hypothesis (10, 20, 65, 130, 260 days). As we test six pairs of algorithms 30 t-tests 
were conducted. Sample sizes for each trading period refer to the number of trading 
periods in the interval 01-01-1998 to 12-31-2007, i.e. for trading period length of 10 
days we have a sample of 260 returns, for trading period length 20 we have a sample 
of 130 returns, etc. Results are shown in Table 6. The lower the p-value, the more 
"significant" is the result of the t-test concerning the rejection of H0. The “no proof” 
entries mean that the null hypothesis H0 cannot be rejected, i.e. we cannot prove that 
A1 > A2; the “true” entries mean that the null hypothesis H0 could be rejected, i.e. A1 > 
A2 is true. 

 
Period Length 10 days 20 days 65 days 130 days 260 days 

(1) H0: Threat < Square 

Threat > Square no proof no proof no proof no proof no proof 

p-value 24.55% 6.99% 9.49% 6.70% 27.77% 

(2) H0: Threat < BH 

Threat > BH true true  true  true  true  

p-value 0.00% 0.00% 0.00% 0.00% 0.41% 

(3) H0: Threat < Constant 

Threat > Constant true  true  true  true  true  

p-value 0.00% 0.00% 0.01% 0.19% 1.92% 

(4) H0: Square < BH 

Square > BH true  true  true  true  true  

p-value 0.00% 0.00% 0.00% 0.81% 1.19% 

(5) H0: Square < Constant 

Square > Constant true  true  true  no proof no proof 

p-value 0.00% 0.00% 0.27% 8.57% 5.26% 

(6) H0: BH < Constant 

BH > Constant no proof no proof no proof no proof no proof 

p-value 65.64% 85.23% 95.31% 79.94% 56.96% 

Table 6: Comparing the Trading Algorithms 
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When testing the null hypothesis that the 10 year average of the period returns of 

Constant is less or equal than the 10 year average of the period returns of BH (H0: 
Constant < BH) the null hypothesis cannot be rejected in four cases (10, 20, 130, 260 
days). For 65 days the t-test result is highly significant, rejecting the null hypothesis 
with p-value 4.69%. 

6 Conclusions 

In order to answer the five questions raised in this paper simulation runs with 
different number and lengths of trading periods were performed. We assumed the 
precise values for m, M, and T to be known. The answers to Questions 1, 2, and 5 are 
summarized in Table 7. The “no” entries in column “t-test” mean that the null 
hypothesis could not be rejected; the “yes” entry means that the null hypothesis could 
not be rejected for two period lengths. 
 

10 Year Interval 1998-2007 
 Average Period Return Simulation t-test 
(1) Threat dominates Square yes no 
(2) Threat dominates BH yes yes 
(3) Threat dominates Constant yes yes 
(4) Square dominates BH yes yes 
(5) Square dominates Constant yes (yes) 
(6) BH dominates Constant yes no 

Table 7: Summary of simulation and t-test results 
 
The table shows that the results found in the simulation runs could be confirmed 
clearly in three cases and weakly in one case. This is not only true for average period 
returns but also for the corresponding competitive ratio. Where the results from the 
simulation runs cannot be confirmed by the t-test the return values generated by the 
two algorithms are too close to produce significance. Since the t-ratios assume 
normality, stationarity, and time-independent distributions it would be interesting to 
perform a bootstrap procedure to calculate critical values when dealing with small 
samples, cf. Tabak and Lima [TL09]. 

The conclusion is that Threat clearly outperforms BH and Constant. This result 
was achieved without considering transaction costs. If transaction costs have to be 
considered Threat still outperforms Constant because it never generates more 
transactions. If we want to reduce transaction costs experimental results show that 
Square is a good alternative to Threat, i.e. it also outperforms BH. The worst 
performance found in the simulation is achieved by Constant. BH looses performance 
relative to Threat and Square the shorter the periods are. For the worst case ratio 
average period return values are increasing the longer the periods are. The worst case 
performance is the greater the greater the difference in m and M which gets greater 
with longer periods. 

One might argue that the comparison of Threat and Square with BH and Constant 
is not appropriate because the first two algorithms use information about future prices 
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while the latter two do not. It is also to be expected that algorithms which use more 
information should perform better than these which do not. Note, that BH and 
Constant could also be modified such that they would use information about m and M. 
But in reality no algorithm can rely on the correctness of information about future 
prices and forecasts for m and M. A suitable procedure for estimating m and M is an 
important factor to provide a good online algorithm. It also would be of interest to 
assume that we do not have forecasts for m and M. One approach is to observe a 
certain number k of the T prices within a time horizon with k < T and then trade to the 
next best price q(t) > max (<min) {q(t) | t = 1, …, k} (cf. the approach to the 
secretary’s problem in Freeman [Fre83] and Ferguson [Fer89]). 

It also would be interesting to analyse the performance of Threat compared to 
Square and BH in further experiments taking transaction costs into account (possibly 
including discounting the payments). Moreover one could investigate how Threat 
performs in comparison to other popular trading rules like Moving Average and 
Trading Range Breakout. 
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